Innovations in management forecast: time development of stock prices with neural networks

Authors:
Marek Vochozka1, Jakub Horak1, Tomas Krulicky1
1. Institute of Technology and Business in Ceske Budejovice (Czech Republic)
Pages:
324 - 339
Language:
English
Cite as:
Vochozka, M., Horak, J., & Krulicky, T. (2020). Innovations in Management Forecast: Time Development of Stock Prices with Neural Networks. Marketing and Management of Innovations, 2, 324-339. http://doi.org/10.21272/mmi.2020.2-24


Annotation

Accurate prediction of stock market values is a challenging task for over decades. Prediction of stock prices is associated with numerous benefits including but not limited to helping investors make wise decisions to accumulate profits. The development of the share price is a dynamic and nonlinear process affected by several factors. What is interesting is the unpredictability of share prices due to the global financial crisis. However, classical methods are no longer sufficient for the application of share price development prediction.However, over-relying on prediction data can lead to losses in the case of software malfunction. This paper aims to innovate the prediction management when predicting the share price development over time by the use of neural networks. For the contribution, the data on the prices of CEZ, a.s. shares obtained from the Prague Stock Exchange database. The stock price data are available for the period 2012-2017. In the case of Statistica software, the multilayer perceptron networks (MLP) and the radial basis function networks (RBF) are generated. In the case of Matlab software, the Support Vector Regression (SVR) and the Back-Propagation Neural Network (BPNN) are generated. The networks with the best characteristics are retained and based on the statistical interpretation of the results, and all are applicable in practice. In all data sets, MLP networks show stable performance better than in the case of SVR and BPNN networks. As for the final assessment, the deviation of 2.26% occurs in the most significant differential of the maximal and the minimal prediction. It is not necessarily significant regarding the price of one stock. However, in the case of purchasing or selling a large number of stocks, the difference may seem significant. Therefore, in practice, the application of two networks is recommended: MLP 1-2-1 and MLP 1-5-1. The first network always represents a pessimistic, minimal prediction. The second one of the recommended networks is an optimistic, maximal prediction. The actual situation should correspond to the interval of the difference between the optimistic and pessimistic prediction.


Keywords
Statistica software, Matlab software, stock price development, neural networks, prediction.


Links
  1. Andrea, T., Beata, G., & Marcel, B. (2017). The composite leading indicator for German business cycle. Journal of Competitiveness, 9(4), 114. [Google Scholar] [CrossRef]
  2. CEZ (2019). Introducing Czech Power Company CEZ. Retrieved from https://www.cez.cz/en/cez-group/cez.html
  3. Chaigusin, S., Chirathamjaree, C., & Clayden, J. (2008, December). The use of neural networks in the prediction of the stock exchange of Thailand (SET) Index. In 2008 International Conference on Computational Intelligence for Modelling Control & Automation (pp. 670-673). IEEE. [Google Scholar] [CrossRef]
  4. Chen, S., & He, H. (2018, October). Stock prediction using convolutional neural network. In IOP Conference Series: Materials Science and Engineering (Vol. 435, No. 1, p. 012026). [Google Scholar] [CrossRef]
  5. Chowdhury, R., Mahdy, M. R. C., Alam, T. N., Al Quaderi, G. D., & Rahman, M. A. (2020). Predicting the stock price of frontier markets using modified Black–Scholes Option pricing model and machine learning. Physica A: Statistical Mechanics and its Applications. [Google Scholar] [CrossRef]
  6. Dinh, T. A., & Kwon, Y. K. (2018). An empirical study on importance of modeling parameters and trading volume-based features in daily stock trading using neural networks. In Informatics (Vol. 5, No. 3, p. 36). Multidisciplinary Digital Publishing Institute. [Google Scholar] [CrossRef]
  7. Endress, T. (2018). «Deliberated Intuition» in Stock Price Forecasting. Economics and Sociology, 11(3), 11-27. [Google Scholar] [CrossRef]
  8. Enke, D., Grauer, M., & Mehdiyev, N. (2011). Stock market prediction with multiple regression, fuzzy type-2 clustering and neural networks. Procedia Computer Science, 6, 201-206. [Google Scholar] [CrossRef}
  9. Fitriyaningsih, I., Tampubolon, A. R., Lumbanraja, H. L., Pasaribu, G. E., & Sitorus, P. S. (2019). Implementation of Artificial Neural Network to Predict S&P 500 Stock Closing Price. In Journal of Physics: Conference Series (Vol. 1175, No. 1, p. 012107). IOP Publishing. [Google Scholar] [CrossRef]
  10. Gandhmal, D. P., & Kumar, K. (2019). Systematic analysis and review of stock market prediction techniques. Computer Science Review, 34, 100190. [Google Scholar] [CrossRef]
  11. Groda, B., & Vrbka, J. (2017). Prediction of stock price developments using the Box-Jenkins method. In SHS Web of Conferences: Innovative Economic Symposium 2017 – Strategic Partnership in International Trade. [CrossRef]
  12. Guo, Z., Wang, H., Yang, J., & Miller, D. J. (2015). A stock market forecasting model combining two-directional two-dimensional principal component analysis and radial basis function neural network. PloS one, 10(4), e0122385. [Google Scholar] [CrossRef]
  13. Jujie, W. A. N. G., & Danfeng, Q. U. E. (2018). An experimental investigation of two hybrid frameworks for stock index prediction using neural network and support vector regression. Economic Computation & Economic Cybernetics Studies & Research, 52(4). [Google Scholar] [CrossRef]
  14. Kamata, H. (2016). A Segmentation Analysis of Japanese Spa Tourists. Journal of Tourism & Services, 7(12). [Google Scholar]  
  15. Ma, J., & Liu, L. (2008). Multivariate nonlinear analysis and prediction of Shanghai stock market. Discrete Dynamics in Nature and Society, 2008. [Google Scholar] [CrossRef]
  16. Mira, M. D. R. C., Moura, A. F. A., & Mónico, L. D. S. M. (2018). A new measure of the quality of tourism product. Journal of Tourism and Services, 9(17). [Google Scholar] [CrossRef]
  17. Mostafa, M. M., & El-Masry, A. A. (2016). Oil price forecasting using gene expression programming and artificial neural networks. Economic Modelling, 54, 40-53. [Google Scholar] [CrossRef]
  18. Nayak, S. C., & Misra, B. B. (2018). Estimating stock closing indices using a GA-weighted condensed polynomial neural network. Financial Innovation, 4(1), 21. [Google Scholar] [CrossRef]
  19. Nayak, S. C., Misra, B. B., & Behera, H. S. (2017). Artificial chemical reaction optimisation of neural networks for efficient prediction of stock market indices. Ain Shams Engineering Journal, 8(3), 371-390. [Google Scholar] [CrossRef]
  20. Ntakaris, A., Magris, M., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2018). Benchmark dataset for mid‐price forecasting of limit order book data with machine learning methods. Journal of Forecasting, 37(8), 852-866. [Google Scholar] [CrossRef]
  21. Plastun, O. L., Kozmenko, S. M., Plastun, V., & Filatova, H. P. (2019). Market anomalies and data persistence: The case of the day-of-the-week effect. [Google Scholar] [CrossRef]
  22. Pyo, S., Lee, J., Cha, M., & Jang, H. (2017). Predictability of machine learning techniques to forecast the trends of market index prices: Hypothesis testing for the Korean stock markets. PloS one, 12(11). [Google Scholar] [CrossRef]
  23. Qiu, M., & Song, Y. (2016). Predicting the direction of stock market index movement using an optimised artificial neural network model. PloS one, 11(5). [Google Scholar] [CrossRef]
  24. Rodríguez-Gonzalez, A., García-Crespo, A., Colomo-Palacios, R., Iglesias, F. G., & Gómez-Berbís, J. M. (2011). CAST: Using neural networks to improve trading systems based on technical analysis by means of the RSI financial indicator. Expert systems with Applications, 38(9), 11489-11500. [Google Scholar] [CrossRef]
  25. Shastri, M., Roy, S., & Mittal, M. (2019). Stock price prediction using artificial neural model: an application of big data. EAI Endorsed Transactions on Scalable Information Systems, 6(20). [Google Scholar] [CrossRef]
  26. Vrbka, J., & Rowland, Z. (2017). Stock price development forecasting using neural networks. In SHS Web of Conferences: Innovative Economic Symposium 2017 – Strategic Partnership in International Trade. doi: [CrossRef]
  27. Vrbka, J., Machova, V., & Turkova, M. (2018). Evaluation of the stock prices of a concrete company. In 9th International Scientific Conference «Company Diagnostics, Controlling and Logistic».
  28. Vrbka, J., Rowland, Z., & Suleř, P. (2019). Comparison of neural networks and regression time series in estimating the development of the EU and the PRC trade balance. In SHS Web of Conferences (Vol. 61, p. 01031). EDP Sciences. [Google Scholar] [CrossRef]
  29. Wang, J., Wang, J., Fang, W., & Niu, H. (2016). Financial time series prediction using elman recurrent random neural networks. Computational intelligence and neuroscience, 2016. [Google Scholar] [CrossRef]